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Time reversal mirrors work perfectly only for lossless wave propagation; dissipation
destroys time-reversal invariance and limits the performance of time-reversal mir-
rors. Here, a new measure of time-reversal mirror performance is introduced and
the adverse effect of dissipation on this performance measure is investigated. The
technique of exponential amplification is employed to partially overcome the effect
of non-uniform loss distributions, and its success is tested quantitatively using the
new performance measure. A numerical model of a star graph is employed to test
the applicability of this technique on realizations with various random spatial distri-
butions of loss. A subset of the numerical results are also verified by experimental
results from an electromagnetic time-reversal mirror. The exponential amplification
technique is a simple way to improve the performance of emerging technologies
based on time-reversed wave propagation such as directed communication and wire-
less power transfer. C© 2014 Author(s). All article content, except where otherwise
noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4894448]

I. INTRODUCTION

Time reversal (TR) mirrors can, under ideal circumstances, precisely reconstruct a wave dis-
turbance which happened at an earlier time, at any given later time. They have found numerous
applications since the earliest experimental demonstrations of TR using acoustic waves.1 More
recently, TR mirrors have been realized using electromagnetic waves2, 3 expanding their range of
applicability. TR mirrors have applications in communications,4–7 imaging,8, 9 source localization,10

non-destructive evaluation,11, 12 selective beamforming,13 and sensing.3, 14, 15 The principles under-
lying TR mirrors are closely linked with the concepts of scattering fidelity,16 and the Loschmidt
echo.14

TR mirrors are used to focus waves both in space and time. An ideal TR mirror consists of a wave
source located inside a lossless medium that is completely enclosed by a surface of transceivers. A TR
mirror operates in two steps. In step one, a source transmits a brief signal and the transceivers record
and absorb the signal broadcast by the source. In step two, the transceivers rebroadcast time reversed
versions of the recorded waves. The waves broadcast in step two eventually focus on the location of
the source and reconstruct a time reversed version of the original signal, which was broadcast in step
one. This is possible because of the TR invariance property of the lossless wave equation. This ideal
TR mirror uses the so called closed TR cavity.17 However, it is not generally practical, for example,
to build a closed TR cavity, whose interior is completely covered with transceivers. Practical TR
mirrors have several limitations, which result in an imperfect reconstruction of the original signal.
These limitations include i) limited spatial coverage by the transceivers, and ii) dissipation during
the wave propagation (which breaks TR invariance of the wave equation).14, 18

2158-3226/2014/4(8)/087138/10 C© Author(s) 20144, 087138-1

 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported license. See: http://creativecommons.org/licenses/by/3.0/

Downloaded to IP:  130.225.94.66 On: Thu, 28 Aug 2014 16:12:41

http://dx.doi.org/10.1063/1.4894448
http://dx.doi.org/10.1063/1.4894448
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4894448&domain=pdf&date_stamp=2014-08-28


087138-2 Taddese et al. AIP Advances 4, 087138 (2014)

The first limitation of TR mirrors can be overcome, for example, by the use of a reflecting
wave chaotic19, 20 cavity with partial spatial coverage of the walls by transceivers that have a long
recording time.14, 18 However, the limitation due to dissipation persists, and leads to increasing loss
of information as the recording time increases.

The technique of iterative TR was proposed to improve the performance of TR mirrors which
suffer from the limitations of dissipation and incomplete spatial coverage of transceivers.21, 22 How-
ever, the iterative technique may not converge fast enough, despite a recent result showing the
tunability of its convergence.23 A faster alternative to the iterative technique is the inverse filter
technique.21, 24 But, the inverse filter requires detailed measurements at multiple locations in the
medium, and is computationally costly unless it is replaced with an iterative technique,21, 22 which
can also be time-consuming.

On the other hand, the technique of exponential amplification, or amplitude aberration
pretreatment,24, 25 was used to overcome the adverse effect of dissipation on TR based sensing
techniques.14, 15 In that case, the exponential amplification technique was successfully employed to
extend the spatial range of the TR based sensing techniques. Exponential amplification has also been
employed to remove the effects of dissipation on the scattered field intensity in disordered wave
propagation systems.26

In this paper, another application of the exponential amplification technique is proposed. Unlike
the work in Ref. 15, the application involves improving the performance of TR mirrors which
suffer from dissipation. The performance of TR mirrors is defined as the normalized correlation
between the original pulse and the time reversed version of the reconstructed pulse (after some post-
processing). This paper quantitatively demonstrates that the exponential amplification technique
partially mitigates the adverse effects of dissipation on the performance of TR mirrors, for different
spatial loss distributions. The technique of exponential amplification can compete with the iterative
TR technique in improving this performance of TR mirrors, to some extent. The advantage of the
exponential amplification technique is that it is faster to implement, as it does not rely on iterative
steps. It is also cheaper computationally. The application of the exponential amplification proposed
in this paper can enable better TR mirror-based communication and wireless power transfer systems
in a lossy environment, as discussed in Sec. V.

In Sec. II, the theory supporting the exponential amplification technique, first discussed in
Ref. 15, is summarized. A measure of the performance of TR mirrors, which was not discussed
in Ref. 15, is also defined in Sec. II. In Sec. III, the exponential amplification technique is used
to improve the newly defined performance of an electromagnetic TR mirror. In particular, it is
experimentally shown that the technique can improve the performance of a TR mirror for the case of
spatially uniform distributed loss. Sec. IV investigates the limits of applicability of the exponential
amplification in systems with inhomogeneous loss distributions. Sections V and VI present further
discussion of application of these ideas, and conclusions.

II. THEORY

Here we specifically consider time-reversal of wave propagation in a closed, or nearly closed,
reverberant environment. More generally one can consider time-reversal in open multiple-scattering
environments, as has been done in Refs. 21, 24, 25, and 27, for example. The theory supporting
the exponential amplification technique was originally presented in the context of reverberant en-
vironments in Ref. 15. In this section, the theory is summarized and a new quantitative measure
of performance of TR mirrors is defined. To summarize the theory, a cavity with transfer function
s(ω) is considered. When a brief pulse, a(t), is broadcast into the cavity, the response is b(t). At a
later time, a time reversed version of b(t) denoted b(−t) is broadcast back into the cavity producing
reconstructed pulse denoted c(−t) at the original broadcasting antenna or transducer.

Ref. 15 provides a derivation showing that, if the cavity is lossless, a(t) is the same as a time
reversed version of c(−t) denoted here as c(t). Thus, the TR mirror works perfectly in a lossless
cavity.

Even if the cavity is lossy, it is shown that the TR mirror can still recover the original pulse
in the special case of uniform loss. By uniform loss we mean that the wave speed and attenuation
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are constant throughout the reverberant environment. In addition we assume that the attenuation is
the same for all frequencies making up the propagating waveform. Suppose that the uniform loss is
represented by a 1/e amplitude decay time τ . In this case, the signal b(t) is exponentially amplified
by e2t/τ , time reversed, and broadcast back into the cavity. b̃(−t) denotes the signal obtained after
exponentially amplifying b(t), and time reversing it. Similarly, c̃(−t) denotes the reconstructed pulse
obtained when b̃(−t) is broadcast back into the cavity. Ref. 15 analytically predicts that c̃(t)e−2t/τ

is equal to a(t) for a uniform loss that is characterized by τ .
Here, we define a new signal ĉ(t) which is equal to c̃(t)e−2t/τ . ĉ(t) is called the corrected

reconstructed pulse. In contrast with prior work, here we are interested in reproducing the detailed
time-domain behavior of the original signal in the reconstructed waveform. As such we define a new
figure of merit to measure the accuracy of the reproduction. The performance (η) of the TR mirror
is defined based on the normalized correlation between the corrected reconstructed pulse (ĉ(t)), and
the original pulse (a(t)).

η ≡
∑t=T

t=0 a(t)ĉ(t)√∑t=T
t=0 a(t)2

∑t=T
t=0 ĉ(t)2

(1)

Each of the signals a(t) and ĉ(t) have a duration of T. In principle, η can range from −1 to 1.
However, since the two signals are aligned to maximize η, η ranges from 0 (poor performance) to
1 (perfect reconstruction). Based on the result from Ref. 15, a(t) = ĉ(t) if the system is uniformly
lossy with a 1/e voltage decay time, τ ; therefore, the performance of the TR mirror is expected to be
perfect (i.e. η = 1). However, the analysis does not model the effect of noise and limited dynamic
range on the exponential amplification technique.

If the exponential amplification is not applied to b(t), the performance, η, can still be calculated
using the signals a(t) and c(t), instead of using a(t) and ĉ(t). But, if the system is lossy, and exponential
amplification is not applied, then it is not expected that η = 1.

We define the performance η because it is a simple and convenient measure of the reconstruction
quality that is known to have the value η = 1 in the ideal case of uniform loss. As such it provides a
sensitive measure of the effectiveness of modified time-reversal schemes to overcome the effects of
non-uniform loss.

In Sec. III, this theory, which assumes uniform loss distribution, is successfully tested in
an experimental system that approximates the case of uniform loss distribution. However, it
is also expected that the technique might be useful in the case of a moderately non-uniform
loss distribution. The applicability of the exponential amplification technique to partially miti-
gate the effect of non-uniform loss is studied with a simple but effective numerical model in
Sec. IV.

III. OVERCOMING THE EFFECT OF SPATIALLY UNIFORM LOSS: EXPERIMENTAL TEST

The electromagnetic TR mirror operates as shown in Fig. 1. The TR mirror involves a roughly
one cubic meter rectangular aluminum box that has irregular scatterers inside it, and two ports in its
walls.3 The aluminum walls of the cavity are constructed of a single material, and can be assumed
to have a uniform spatial distribution of loss. The original pulse was broadcast into the cavity using
port 1, and the response signal, which we call “sona”, was collected using port 2. The original pulse
had a carrier frequency of 7 GHz and a Gaussian envelope with a standard deviation of 1 ns. The
sona was recorded for about 6.5 μs with a signal to noise ratio (SNR) greater than 1. During the
second step of the TR mirror operation, the sona signal was time reversed and broadcast back into the
cavity using port 1; this made use of the spatial reciprocity property of the wave equation. Finally, a
reconstructed pulse, which approximates a time reversed version of the original pulse, was collected
at port 2. The reconstructed pulse (and its temporal sidelobes) was collected over a 10 μs duration.
The first 6.5 μs included a direct recording of the time reversed sona being injected into the cavity
from port 1. The last 3.5 μs was a recording of the post-reconstructed pulse emerging from port 2,
reverberating throughout the cavity.
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FIG. 1. Schematic of the electromagnetic time reversal (TR) mirror experiment, without exponential amplification. During
the first step of the TR mirror, the original pulse is broadcast through antenna 1 (as shown in part 1), and the resulting sona is
collected at antenna 2 (as shown in part 2). During the next step of the TR mirror, the time reversed sona is injected into the
system at antenna 1 (as shown in part 3) to retrieve the reconstructed time reversed pulse at antenna 2, making use of spatial
reciprocity (as shown in part 4). Experimental data are shown for each step.

Based on Eq. (1), η can be calculated as the normalized correlation between the following two
aligned signals: i) the time reversed version of the reconstructed pulse with its temporal sidelobes
(which was a 10 μs long recording), and ii) the original pulse broadcast (by considering the 1 ns
long Gaussian envelope to be located at t = 3.5 μs of a 10 μs long signal of mostly zero voltage
values). Note that these two signals are equivalent to the aligned a(t) and c(t) signals introduced in
Sec. II. If the TR mirror were perfect, η would be 1. However, as can be seen in part 4 of Fig. 1,
the reconstructed pulse has temporal sidelobes which result in η < 1. The sidelobes arise due to the
limitations of practical TR mirrors discussed in Sec. I, which include limited spatial coverage of
transceivers and dissipation.

Generally, the sona signal shows an exponential decay which is caused by dissipation and
coupling losses to the feed transmission lines. The experimental system discussed here is strongly
under-coupled,28 which means that the effect of dissipation dominates the effect of coupling. There-
fore, the 1/e voltage decay constant (τ ), which is related to the unloaded quality factor, can be
readily determined by a linear fit to the log of the sona energy as a function of time. The exponential
amplification can then be applied to the sona signal before it is time reversed and broadcast into the
cavity, similar to the ’pretreatment’ used to overcome amplitude aberration for sound propagation
in attenuating media.25 The exponential amplification is carried out by multiplying the sona signal
by the time dependent amplifying function

A(t, F) = exp(
Ft

τ
) (2)

where t is time in seconds, and F is an adjustable factor. Assuming a precise determination of τ ,
using F = 1 compensates only for the effect of dissipation on the sona during step 1 of the TR
mirror operation; whereas, using F = 2 compensates for the effect of dissipation on the sona during
both step 1 and step 2 of the TR mirror operation.15 The theoretical discussion in Sec. II predicts
that F = 2 to maximize η. The exponential amplification is applied to the part of the sona whose
signal to noise ratio is, at the very least, greater than 1 (i.e. the 6.5 μs long sona in this experiment).
In addition, the function A(t, F) is typically terminated by a smooth ramp-down function whose
time span is at least as wide as the time duration of the original pulse, which is 1 ns; this prevents
additional frequency components from entering into the sona.

Suppose that the sona is exponentially amplified using A(t, F), before it is time reversed and
broadcast into the electromagnetic cavity. The reconstructed pulse obtained with F > 0 will have
more sidelobes than the reconstructed pulse obtained with F = 0. However, these sidelobes can
be numerically suppressed by manipulating the reconstructed waveform as follows. Fig. 2 shows
the reconstructed waveform obtained using sona that is amplified with A(t, F = 2) (in blue); the
reconstructed waveform has unwanted temporal sidelobes which are a result of the exponential
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FIG. 2. The experimental reconstructed TR pulse obtained from a sona that was exponentially amplified with F = 2 (blue)
had significant sidelobes. The corrected reconstructed pulse (red) was obtained by multiplying the time reversed version of
the reconstructed TR pulse by A(t − 3.5 μs, F = −2). The corrected reconstructed pulse is displayed here after time reversing
it. A(t, F) = 1 if t < 0. The inset shows a close up of the reconstructed pulses, which are essentially identical before and after
the correction.

FIG. 3. The TR mirror performance (η) of the experimental electromagnetic TR mirror as a function of the F parameter (see
Eq. (2)) used to exponentially amplify the sona signal. The optimum value of the parameter is F = 2.

amplification applied to the sona. These sidelobes were corrected as follows. The 10 μs long
reconstructed waveform was time reversed so that the 1 ns long Gaussian pulse is located at about
t = 3.5 μs; this waveform was then multiplied by A(t − 3.5 μs, F = −2) to get the corrected
reconstructed waveform (i.e. ĉ(t)) introduced in Sec. II. A(t, F) = 1 for t < 0 by convention. In
Fig. 2, the corrected reconstructed waveform is time reversed and plotted (in red) to highlight its
relationship with the reconstructed waveform. The corrected reconstructed waveform is expected to
have a better normalized correlation with the original pulse because of the exponential amplification
with F = 2, as predicted in Sec. II.

Several values of F were used to carry out the operation of the TR mirror assisted by exponential
amplification. For each F value, the performance of the electromagnetic TR mirror, η, is reported in
Fig. 3. The performance of the TR mirror is enhanced the most by using exponential amplification
with F ≈ 2. In particular, η increases from ≈63% at F = 0 (which corresponds to keeping both
the time-forward and time-reversed attenuation), to ≈69% at F = 1 (the time-forward attenuation
is compensated, and the resulting sona is time-reversed), to ≈73% at F = 2 (something akin to the
inverse filter,24 where both attenuation contributions are compensated). Larger values of F lead to
systematic degradation of the efficiency. This result agrees with the theoretical prediction in Sec. II.
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The fact that the η < 1 even for F ≈ 2 can be explained by the fact that the TR mirror has only one
recording channel, whereas the theory assumes that all the waves are captured. Thus, the exponential
amplification technique only overcomes the limitation of the TR mirror associated with dissipation,
and not the problem of insufficient spatial coverage of recorders. Noise, which is not considered in
the theory, also affects the performance of TR mirrors as seen, for example, in Ref. 23.

As shown in Fig. 3, η ≈ 63% if the exponential amplification technique is not applied. The
exponential amplification with the optimum F = 2 parameter achieves η ≈ 73% for the experimental
set up described. This compares with η ≈ 78% which is achieved by the tunable iterative technique
on the same experimental set up.23 Therefore, the iterative technique performs better than the
exponential amplification technique when both of them use their respective optimum parameters.
Nonetheless, the exponential amplification has an advantage because of its speed, and computational
simplicity.

The result in this section proves that the exponential amplification improves the performance,
η, of TR mirrors with uniform spatial loss. The results are also in good qualitative agreement with
expectations for exponential amplification.

IV. OVERCOMING THE EFFECT OF SPATIALLY NON-UNIFORM LOSS:
NUMERICAL TEST

The exponential amplification technique is derived assuming uniform loss distribution. The
case of non-uniform loss distribution is better handled with techniques such as the inverse filter, and
the iterative TR,21, 22, 24 which do not assume uniformity of loss. However, it is expected that the
exponential amplification can be successfully applied in cavities with moderately inhomogeneous
loss distributions.

We have repeated the experiments discussed in Sec.III inside a similar cavity with a non-uniform
spatial loss distribution, and we have shown that η increases from ≈47% at F = 0 to ≈52% at
F = 2. This modest improvement is due to the use of very lossy microwave absorber material to vary
the loss, resulting in very inhomogeneous loss distribution. In this section, a systematic and better
controlled numerical study of the effect of non-uniform spatial loss distribution on the applicability
of the exponential amplification technique is presented.

The applicability of the exponential amplification technique was studied as the inhomogeneity
of the spatial distribution of loss was increased. The simulations in this section were designed to
supplement the experimental results in Sec. III.

A. Simulation Setup

The numerical model is an implementation of a star graph.6, 7, 23, 29 We use the star graph because
it is a type of quantum graph that has generic properties of wave chaotic systems,29 but it is relatively
simple to understand and simulate. The star graph is a quasi-1D chaotic system. It is modeled using
a driving transmission line that feeds a number of other transmission lines, which are all connected
to each other in parallel at a single node (see Fig. 4). Each transmission line is terminated with
a reflection load. The graph is a one port system. Thus, the original pulse is injected through the
driving transmission line, and the sona is also collected from the same line. The original pulse has
the same characteristics as the one used in the experiment described in Sec. III.

There are 500 transmission lines in the star graph, in addition to the driving line. Their lengths
are given by Li = √

i m for integer i ranging from 1 to 500. The driving line has a length of 0 m.
The characteristic admittances of the 500 lines are Yci = 1S. The driving line has a characteristic
admittance of Ycd = ∑i=500

i=1 Yci = 500S; this choice eliminates prompt reflection of signals injected
through the driving line. The terminal reflection coefficients, �i, of the 500 lines are all set to 1.
The dissipation is introduced through the frequency dependent propagation constant of the lines,
γi (ω) = j ω

c + αi , where j is the square root of −1, c is the speed of light and αi is the loss constant
of line i.

αi specifies that the voltage waves decay on line i as e−αi z , where z is distance measured along
line i in meters. The spatial inhomogeneity of loss on the star graph is modeled as follows. The αi
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FIG. 4. Schematic of the one-port star graph model shows N transmission lines and a driving transmission line, which are all
connected in parallel. Each of the N lines (labeled by i) can have unique length (Li), characteristic admittance (Yci), frequency
dependent propagation constant (γ i(ω)), and termination reflection coefficient (�i). The driving line has a characteristic
admittance of Ycd and zero length.

FIG. 5. The probability density function (pdf) of propagation loss factor α (Eq. (3)) is plotted for different R = σα /μα values,
where μα ≈ 0.002. R is a measure of loss inhomogeneity with larger values representing systems with wider loss variation.
The pdf is plotted for R = 0.2 (blue), R = 0.5 (black), and R = 1 (red).

of each of the 500 lines is randomly chosen from the probability density function (pdf),

pn,λ(α) = αn

λn+1n!
exp(−α/λ). (3)

This pdf has two parameters, n and λ, which define the mean (μα = λ + λn) and standard deviation
(σα = √

λ(λ + λn)) of α values. This particular pdf is chosen for the following two reasons. First,
the coefficient of loss inhomogeneity (R = σα/μα) can be easily varied while keeping μα constant.
Keeping the average spatial loss constant simplifies the problem, and helps us focus on the effect of
increasing spatial loss inhomogeneity. The main motivation for using the exponential amplification
in the case of non-uniform loss is this: if the 1/e decay constants (i.e. τ ) of the different modes are
not extremely different, we can use a single average τ value. Thus, it is not interesting to vary the
average loss (effectively τ ) here. In this set up μα is chosen as (cτ )−1, where τ = 1.5 μs. The second
reason to use this particular pdf is that its support is the set of positive numbers, which should be the
case as α should always be positive on the passive transmission lines. Fig. 5 shows plots of the pdf
for different values of R, where μα ≈ 0.002 is constant.
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FIG. 6. The performance (η) of the TR mirror in a star graph model as a function of F parameter for various degrees of loss
inhomogeneity characterized by R. Loss inhomogeneity increases with R. The optimum F value is always around F = 2 for
the τ value that is determined from the sona signal time decay.

The numerical values of the parameters of the star graph were chosen to achieve the following
objective. The experimental result in Sec. III was based on an under-coupled cavity. An under-
coupled cavity is characterized by the domination of energy loss due to dissipation over energy loss
due to coupling.28 If the cavity is not under-coupled, the advantage of the exponential amplification
technique cannot be easily seen because there are no strong internal dissipation effects to be com-
pensated in an over-coupled cavity. To accomplish under-coupling, 500 lines were used in the star
graph to increase the back-reflection coefficient of the waves that are trying to leave the star graph.
This forced the waves to reverberate inside the star graph longer, which decreased the coupling loss
by two orders of magnitude compared to the dissipation loss.

B. Simulation Results

A TR mirror was implemented on the star graph by broadcasting the original pulse, collecting
a sona, exponentially amplifying the sona with A(t, F), time reversing the amplified sona, and
broadcasting it back into the star graph. The reconstructed pulse was collected, and it was time
reversed and multiplied by A(t − tp, −F). Here, tp is the time when the 1 ns Gaussian pulse was
expected within the time reversed version of the reconstructed waveform. The signals were collected
over a span of 10 μs without noise.

The performance (η) of the TR mirror is plotted versus F as shown in Fig. 6. This entire process
was repeated for star graphs with different degree of loss inhomogeneity characterized by R. R = 0
represents uniform spatial loss distribution. As R increases, the loss inhomogeneity increases. For
each R value, 25 realizations of the star graph were randomly generated; hence, there are error bars
included on the η vs F plots for each R value, as shown in Fig. 6.

For each R value shown in Fig. 6, the maximum η was taken over all F values attempted; it
turns out that the maximum η is always achieved for F = 2. The maximum η achieved is plotted
as a function of the loss inhomogeneity (R) in Fig. 7 (shown in red). The η achieved without
using exponential amplification (i.e. F = 0) is also plotted as a function of R in Fig. 7 (shown in
black). Fig. 7 demonstrates that the exponential amplification technique improves η significantly,
for small values of R, which are close to uniform loss distributions. The exponential amplification is
still applicable in cavities with more inhomogeneous loss distributions. However, its effectiveness
declines with increasing loss inhomogeneity as expected. The results for large R are consistent with
the experimental observations on a system with inhomogeneous loss, mentioned at the beginning of
this section.
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FIG. 7. The performance (η) of the TR mirror in a star graph model is plotted as a function of the loss inhomogeneity, R,
for the cases of: i) no exponential amplification (shown in black), and ii) optimal exponential amplification, which is always
F = 2 (shown in red). It is clear that exponential amplification is advantageous for uniform and moderately non-uniform
spatial loss distributions.

From Fig. 7, we can see that performance η is not affected significantly by loss inhomogeneity
R if exponential amplification is not applied. Here, it is worth repeating the fact that the average
spatial loss in the star graph is constant for all the R values considered. On the other hand, the fact
that η is not restored to 1 even for R = 0 and F = 2 can be explained by the fact that the star graph
is designed to be under-coupled, to match the nature of the experimental cavity in Sec. III. The
waves in the star graph will continue to reverberate for longer than the 10 μs sona recording time.
Thus, the problem is not just dissipation which can be compensated by the exponential amplification
technique, but also the lack of sufficient temporal coverage, which has previously been shown to
affect the quality of TR focusing.30

V. DISCUSSION

The tunable iterative time-reversal technique overcomes the adverse effect of dissipation on the
real-time spatiotemporal wave focusing of time reversal mirrors.23 The focusing was quantified using
the ratio of pulse to temporal sidelobe energy. In this paper, we are less interested in achieving a real-
time spatiotemporal wave focusing using time reversal mirrors. Instead we are mainly interested
in improving the quality of the reconstructed waveforms to more nearly reproduce the original
waveform. We have demonstrated that exponential amplification can significantly improve the
reconstruction quality even in the presence of moderately inhomogeneous loss. The ability to improve
reconstructed signal fidelity can be useful. For instance, if the detailed shape of the reconstructed
pulse is encoding information in a communication application,6, 7 it is important to be able to
improve the fidelity of the reconstructed pulse (which is measured by η) by suppressing its temporal
sidelobes. In addition, in wireless power transfer technology utilizing time-reversed waveforms, it
will be necessary to optimize energy delivery by tailoring the signal to match the characteristics of
the energy rectifying element.6

VI. CONCLUSION

Exponential amplification improves the performance of time reversal mirrors best if the loss is
uniformly distributed in space. However, even under conditions in which the loss is not uniformly
distributed, the exponential amplification partially mitigates the adverse effect of non-uniform loss
on the performance of time reversal mirrors. The exponential amplification method works best when
the theoretically predicted optimum parameter of F = 2 is used. This technique may be advantageous
to use in time reversal mirror based communication applications because even if the reconstructed
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pulse will have significant temporal sidelobes during the recording, the processed reconstructed
pulse will closely replicate the shape of the original pulse.
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